Маленький почемучка

школа, вопросы, помощь, видео, уроки, з класс, окружающий мир,
 
ФорумФорум  КалендарьКалендарь  ЧаВоЧаВо  ПоискПоиск  ПользователиПользователи  ГруппыГруппы  РегистрацияРегистрация  ВходВход  
Поиск
 
 

Результаты :
 
Rechercher Расширенный поиск
Ключевые слова
панфилов руны мальцева софья Матрица пифогор осина мешков белка велислава знаки маматов традиция лишайники таро славянские тетерев инструкция северная софия чурзина хиромантия дрога пифагор души птица
Последние темы
» ИЗУЧЕНИЕ ИНОСТРАННЫХ ЯЗЫКОВ С НУЛЯ!
наибольший общий делитель и наименьшее общее кратное I_icon_minitimeВт Окт 10, 2017 7:45 pm автор Лир

»  Тайны Русского языка
наибольший общий делитель и наименьшее общее кратное I_icon_minitimeСр Авг 03, 2016 10:19 am автор Лир

» Полиглот. Выучим Английский за 16 часов!
наибольший общий делитель и наименьшее общее кратное I_icon_minitimeВт Июн 14, 2016 8:06 pm автор Лир

» Проценты.
наибольший общий делитель и наименьшее общее кратное I_icon_minitimeПт Май 06, 2016 8:03 pm автор Лир

» Умножение десятичных дробей
наибольший общий делитель и наименьшее общее кратное I_icon_minitimeПт Май 06, 2016 7:53 pm автор Лир

» Тест по русскому языку
наибольший общий делитель и наименьшее общее кратное I_icon_minitimeВт Апр 12, 2016 4:00 pm автор Лир

» История деградации азбуки.
наибольший общий делитель и наименьшее общее кратное I_icon_minitimeСр Мар 09, 2016 6:55 am автор Лир

» частица "не"
наибольший общий делитель и наименьшее общее кратное I_icon_minitimeВт Мар 08, 2016 6:47 pm автор Лир

» Частичка-волонтер
наибольший общий делитель и наименьшее общее кратное I_icon_minitimeВт Мар 08, 2016 6:45 pm автор Лир

» почему так нельзя говорить...
наибольший общий делитель и наименьшее общее кратное I_icon_minitimeВт Мар 08, 2016 6:42 pm автор Лир

» О магических свойствах русского мата..и не только....
наибольший общий делитель и наименьшее общее кратное I_icon_minitimeВт Мар 08, 2016 6:39 pm автор Лир

»  Как обращаться: на вы или на ты?
наибольший общий делитель и наименьшее общее кратное I_icon_minitimeВт Мар 08, 2016 6:35 pm автор Лир

» Спасибо или Благодарю?
наибольший общий делитель и наименьшее общее кратное I_icon_minitimeВт Мар 08, 2016 6:30 pm автор Лир

» Истинный смысл бранных слов
наибольший общий делитель и наименьшее общее кратное I_icon_minitimeВт Мар 08, 2016 6:20 pm автор Лир

» Сказ про букву Р..........а умным...напоминалка. Безопасность при работе с буквицей. Часть 1.
наибольший общий делитель и наименьшее общее кратное I_icon_minitimeВт Мар 08, 2016 6:15 pm автор Лир

» Почему мы так говорим?
наибольший общий делитель и наименьшее общее кратное I_icon_minitimeВт Мар 08, 2016 6:10 pm автор Лир

» Много англ.
наибольший общий делитель и наименьшее общее кратное I_icon_minitimeСр Мар 02, 2016 6:23 am автор Лир

» УЧИМСЯ ГОВОРИТЬ ПРАВИЛЬНО
наибольший общий делитель и наименьшее общее кратное I_icon_minitimeСр Мар 02, 2016 6:20 am автор Лир

» ЛОВИОТВЕТ-ПОШАГОВЫЙ КАЛЬКУЛЯТОР В ПОМОЩЬ РОДИТЕЛЯМ, ШКОЛЬНИКАМ .
наибольший общий делитель и наименьшее общее кратное I_icon_minitimeВт Мар 01, 2016 7:55 am автор Лир

» Слово с суффиксом "чик": правила написания и примеры -
наибольший общий делитель и наименьшее общее кратное I_icon_minitimeСб Фев 20, 2016 3:47 pm автор Лир

» Анатомия человека: Строение слухового анализатора
наибольший общий делитель и наименьшее общее кратное I_icon_minitimeВс Янв 31, 2016 10:10 am автор Admin

»  Основные законы сложения и умножения
наибольший общий делитель и наименьшее общее кратное I_icon_minitimeСр Янв 20, 2016 9:06 pm автор Лир

» ТАЙНЫ РУССКОГО ЯЗЫКА.
наибольший общий делитель и наименьшее общее кратное I_icon_minitimeСр Янв 20, 2016 10:40 am автор Лир

» 850 СЛОВ НА АНГЛИЙСКОМ ЯЗЫКЕ
наибольший общий делитель и наименьшее общее кратное I_icon_minitimeЧт Дек 31, 2015 6:02 am автор Лир

»  РУСКИЙ ЯЗЫК – ЗДОРОВЬЕ много....
наибольший общий делитель и наименьшее общее кратное I_icon_minitimeВс Дек 27, 2015 11:26 am автор Лир

Июль 2019
ПнВтСрЧтПтСбВс
1234567
891011121314
15161718192021
22232425262728
293031    
КалендарьКалендарь
Партнеры
Создать форум


Поделиться
 

 наибольший общий делитель и наименьшее общее кратное

Перейти вниз 
АвторСообщение
Admin
Admin
Admin

Сообщения : 345
Репутация : 0
Дата регистрации : 2012-11-06

наибольший общий делитель и наименьшее общее кратное Empty
СообщениеТема: наибольший общий делитель и наименьшее общее кратное   наибольший общий делитель и наименьшее общее кратное I_icon_minitimeПт Дек 05, 2014 3:05 pm

наибольший общий делитель и наименьшее общее кратное
Множество делителей
Рассмотрим такую задачу: найти делитель числа 140. Очевидно, что у числа 140 не один делитель, а несколько. В таких случаях говорят, что задача имеетмножество решений. Найдем их все. Прежде всего разложим данное число на простые множители:
140 = 2 ∙ 2 ∙ 5 ∙ 7.
Теперь мы без труда можем выписать все делители. Начнем с простых делителей, то есть тех, которые присутствуют в разложении, приведенном выше:
2, 5, 7.
Затем выпишем те, которые получаются попарным умножением простых делителей:
2∙2 = 4,  2∙5 = 10,  2∙7 = 14,  5∙7 = 35.
Затем — те, которые содержат в себе три простых делителя:
2∙2∙5 = 20,  2∙2∙7 = 28,  2∙5∙7 = 70.
Наконец, не забудем единицу и само разлагаемое число:
1, 140.
Все найденные нами делители образуют множество делителей числа 140, которое записывается с помощью фигурных скобок:
Множество делителей числа 140 =
{1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140}.
Для удобства восприятия мы выписали здесь делители (элементы множества) в порядке возрастания, но, вообще говоря, это делать необязательно. Кроме того, введем сокращение записи. Вместо «Множество делителей числа 140» будем писать «Д(140)». Таким образом,
Д(140) = {1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140}.
Точно так же можно найти множество делителей для любого другого натурального числа. Например, из разложения
105 = 3 ∙ 5 ∙ 7
мы получаем:
Д(105) = {1, 3, 5, 7, 15, 21, 35, 105}.
От множества всех делителей следует отличать множество простых делителей, которые для чисел 140 и 105 равны соответственно:
ПД(140) = {2, 5, 7}.
ПД(105) = {3, 5, 7}.
Следует особо подчеркнуть, что в разложении числа 140 на простые множители двойка присутствует два раза, в то время как во множестве ПД(140) — только один. Множество ПД(140) — это, по своей сути, все ответы на задачу: «Найти простой множитель числа 140». Ясно, что один и тот же ответ не следует повторять больше одного раза.
Сокращение дробей. Наибольший общий делитель
Рассмотрим дробь
105 / 140.
Мы знаем, что эту дробь можно сократить на такое число, которое одновременно является и делителем числителя (105) и делителем знаменателя (140). Взглянем на множества Д(105) и Д(140) и выпишем их общие элементы.
 
Д(105) = {1, 3, 5, 7, 15, 21, 35, 105};
Д(140) = {1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140}.
 
Общие элементы множеств Д(105) и Д(140) =
{1, 5, 7, 35}.
 
Последнее равенство можно записать короче, а именно:
Д(105) ∩ Д(140) = {1, 5, 7, 35}.
Здесь специальный значок «∩» («мешок отверстием вниз») как раз и указывает на то, что из двух множеств, записанных по разные стороны от него, надо выбрать только общие элементы. Запись «Д(105) ∩ Д(140)» читается «пересечение множеств Дэ от 105 и Дэ от 140».
[Заметим по ходу дела, что с множествами можно производить разные бинарные операции, почти как с числами. Другой распространенной бинарной операцией является объединение, которое обозначается значком «∪» («мешок отверстием вверх»). В объединение двух множеств входят все элементы как того, так и другого множества:
ПД(105) = {3, 5, 7};
ПД(140) = {2, 5, 7};
ПД(105) ∪ ПД(140) = {2, 3, 5, 7}. ]
Итак, мы выяснили, что дробь
105 / 140
можно сократить на любое из чисел, принадлежащих множеству
Д(105) ∩ Д(140) = {1, 5, 7, 35}
и нельзя сократить ни на какое другое натуральное число. Вот все возможные способы сокращения (за исключением неинтересного сокращения на единицу):
 
 105 =  105/5 =  21;
 140  140/5  28 
 
 105 =  105/7 =  15;
 140  140/7  20 
 
 105 =  105/35 =  3.
 140  140/35  4 
Очевидно, что практичнее всего сокращать дробь на число, по возможности большее. В данном случае это число 35, про которое говорят, что оно является наибольшим общим делителем (НОД) чисел 105 и 140. Это записывается как
НОД(105, 140) = 35.
Впрочем, на практике, если нам даны два числа и требуется найти их наибольший общий делитель, мы вовсе не должны строить какие-либо множества. Достаточно просто разложить оба числа на простые множители и подчеркнуть те из этих множителей, которые являются общими для обоих разложений, например:
105 = 3 ∙ 5 ∙ 7;
140 = 2 ∙ 2 ∙ 5 ∙ 7.
Перемножая подчеркнутые числа (в любом из разложений), получаем:
НОД(105, 140) = 5 ∙ 7 = 35.
Разумеется, возможен случай, когда подчеркнутых множителей окажется больше двух:
168 = 2 ∙ 2 ∙ 2 ∙ 3 ∙ 7;
396 = 2 ∙ 2 ∙ 3 ∙ 3 ∙ 11.
Отсюда видно, что
НОД(168, 396) = 2 ∙ 2 ∙ 3 = 12.
Особого упоминания заслуживает ситуация, когда общих множителей совсем нет и подчеркивать нечего, например:
42 = 2 ∙ 3 ∙ 7;
55 = 5 ∙ 11.
В этом случае,
НОД(42, 55) = 1.
Два натуральных числа, для которых НОД равен единице, называютсявзаимно простыми. Если из таких чисел составить дробь, например,
42 / 55,
то такая дробь является несократимой.
Вообще говоря, правило сокращения дробей можно записать в таком виде:
 a  =  a / НОД(ab.
 b b / НОД(ab)
Здесь предполагается, что a и b — натуральные числа, а вся дробь положительна. Если мы теперь припишем знак «минус» к обоим частям этого равенства, то получим соответствующее правило для отрицательных дробей.
Сложение и вычитание дробей. Наименьшее общее кратное
Пусть требуется вычислить сумму двух дробей:
   1 +    1.
 105  140 
Мы уже знаем, как раскладываются на простые множители знаменатели:
105 = 3 ∙ 5 ∙ 7;
140 = 2 ∙ 2 ∙ 5 ∙ 7.
Из этого разложения сразу следует, что, для того чтобы привести дроби к общему знаменателю, достаточно числитель и знаменатель первой дроби умножить на 2 ∙ 2 (произведение неподчеркнутых простых множителей второго знаменателя), а числитель и знаменатель второй дроби — на 3 («произведение» неподчеркнутых простых множителей первого знаменателя). В результате знаменатели обеих дробей станут равны числу, которое можно представить так:
2 ∙ 2 ∙ 3 ∙ 5 ∙ 7 = 105 ∙ 2 ∙ 2 = 140 ∙ 3 = 420.
Нетрудно видеть, что оба знаменателя (как 105, так и 140) являются делителями числа 420, а число 420, в свою очередь, кратно обоим знаменателям, — и не просто кратно, оно является наименьшим общим кратным (НОК) чисел 105 и 140. Это записывается так:
НОК(105, 140) = 420.
Приглядевшись повнимательнее к разложению чисел 105 и 140, мы видим, что
105 ∙ 140 = НОК(105, 140) ∙ НОД(105, 140).
Точно так же, для произвольных натуральных чисел b и d:
b ∙ d = НОК(bd) ∙ НОД(bd).
Теперь давайте доведем до конца суммирование наших дробей:
 
   1 +    1 =
 105  140 
 
      1 +       1 =
 3 ∙ 5 ∙ 7  2 ∙ 2 ∙ 5 ∙ 7 
 
         2 ∙ 2 +            3 =
 2 ∙ 2 ∙ 3 ∙ 5 ∙ 7  2 ∙ 2 ∙ 3 ∙ 5 ∙ 7 
 
        4 + 3 = 
 2 ∙ 2 ∙ 3 ∙ 5 ∙ 7 
 
            7 = 
 2 ∙ 2 ∙ 3 ∙ 5 ∙ 7 
 
         1 =
 2 ∙ 2 ∙ 3 ∙ 5 
 
  1  .
 60 
Подобным же образом можно посчитать разность:
 
   1 −    1 =
 105  140 
 
      4 −       3 =
 105 ∙ 4  140 ∙ 3 
 
   4 −    3 =
 420  420 
 
   1.
 420 
Вернуться к началу Перейти вниз
http://schoola.forum2x2.ru
 
наибольший общий делитель и наименьшее общее кратное
Вернуться к началу 
Страница 1 из 1

Права доступа к этому форуму:Вы не можете отвечать на сообщения
Маленький почемучка :: Математика :: Математика-
Перейти: